Sunday, June 28, 2020

Mathematics Formula Algebra - Exponents And Powers

    Mathematics Formula Algebra 

      In algebra, we have various topics having formulas and identities, Some are listed below:- 

     Exponents and Powers

      if we factorize 4,9,16 or 25 then can be written as
    4   = 2 x 2 x 1
    9   = 3 x 3 x 1
    16 = 2 x 2 x 2 x 2 x 2 x 1
    25 = 5 x 5 x 1

      The above expression can be also written in a shorter way using exponents in this way.
    4   = 2 x 2 = 22
    9   = 3 x 3 = 32
   16 = 2 x 2 x 2 x 2 x 2 24
    25 = 5 x 5 52

    In the above expression that represents repeated multiplication of the same factor is called power.
Mathematics Formula Algebra - Exponents And Powers
    The number 2 is called the Base and 4 is known as Power or Exponents or Index.
    The conventions for reading are such as
        The above short notation stands for the product 2  x 2 x 2 x 2. Here '2' is called the base and '4' the exponent. The above number is read as " 2 raised to the power of 4" or simply as the "fourth power of 2". It is also called the exponential form of 16.
Example 1:- Express 64 as the power of 2?
Solution:- By prime factorisation method we have
     64 = 2  x 2 x 2 x 2 x 2  x 2  x 1
     So we can say 64 = 26
Example 2:- Express 128 as the power of 2?
Solution:- By prime factorisation method we have
    128 = 2  x 2 x 2 x 2 x 2  x 2 x 2 x 1
     So we can say 128 = 27
Example 3:- Express 81 as the power of 3?
Solution:- By prime factorisation method we have
  81 =3  x 3 x 3 x 3 x  1
     So we can say 81 = 34
Example 4:- Express 320 as a product of power of prime factors?
Solution:- By prime factorisation method we have
       320 = 2  x 2 x 2 x 2 x 2  x 2  x  5 
              = 26 × 5
                = 320

Laws of Exponents and Powers

The followings are important laws of exponents and are very useful to solve problems;

Laws of Exponents - 1

On Multiplying Power with the Same Base

       For any non zero real number a , where m and n are any rational numbers then 
                    am × an = am + n
or in generally we can say on multiplication if bases are equals then powers may be added.
it can be easily verified by following illustrative example;
Example 5:- Evaluate  23 × 22 ?
Solution:- By general concepts we have
 23 × 22  = (2  x 2 x 2) x (2 x  2)
             = 2  x 2 x 2 x 2 x  2
            =  25
     So we can say   23 × 22  = 23+2
We have to note that the base in  23 and   2is same and the sum of the exponents,i.e, 3 and 2 is 5.          

Laws of exponent - 2
On Dividing Power with the Same Base

       For any non zero real number a, where m and n are any rational numbers then 
                    am÷ an = am - n
or in general, we can say on division if bases are equals then powers may be subtracted.
it can be easily verified by following illustrative examples;
Example 6:- Evaluate  23 ÷ 22 ?
Solution:- By general concepts we have
 23 ÷ 22  = [ 2 x 2 x 2 ] ÷ [ 2 x  2 ]
             = 2 
            =  21
     So we can say   23 ÷ 22  = 23 - 2
We have to note that the base in  23 and   2is same and the difference of the exponents,i.e, 3 and 2 is 1. 
We have consider now one more illustration  for verification of above results       
Example 7:- Evaluate 10 5 ÷ 10 2 ?
Solution:- By general concepts of mathematics we have,
 10 5 ÷ 10 2  =  (10  x 10 x 10 x 10 x 10 ) ÷ (10 x  10)
             = 10  x 10 x 10
            =  103
     So we can say  10 5 ÷ 10 2  = 10 5 - 2
We have to note that the base in  105 and   10is the same and the difference of the exponents,i.e, 5 and 2 is 3.           

Laws of Exponents - 3 
On Multiplying Power with the Same Exponents

       For any non zero real number a and b, where m is any rational number then 
                    am × m = (a x b)= (ab)
or in general, we can say on multiplication if bases are different but powers are equals then bases may be multiplied.
it can be easily verified by following illustrative example;
Example 8:- Evaluate  22 × 2?
Solution:- By general logical concepts we have,
 22 × 52  = (2  x 2 ) x (5 x  5)
             = (2  x 5 ) x (2 x  5)
            = 10 x 10
            =  102
     So we can say   22 × 52  = 102
We have to note that the base in  22 and   5is different but power is the same 2 and the products of the bases,i.e, 2 and 5 are 10.          

Laws of exponent - 4
On Dividing power with the Same Exponents

       For any non zero real number a and b, where m is any rational  number then 
                    am÷ m = (a / b) m
or in general, we can say on division if bases are different and powers are equals then bases may be divided.
it can be easily verified by following illustrative examples;
Example 9:- Evaluate  83 ÷ 23 ?
Solution:- By general concepts we can write,
 83 ÷ 23  = [ 8 x 8 x 8 ] ÷ [ 2 x  2 x 2 ]
             = 4 x 4 x 4 
            =  43
     So we can say   83 ÷ 23  8 / 2)  =  43
Now in the above illustration the bases in  83 and   2is  different but power is same so the bases of the exponents,i.e, 8 and 2 is divided hence result is 4 so required solution is 43
We may consider now one more illustration  for verification of above results       
Example 10:- Evaluate 100 5 ÷ 10 5 ?
Solution:- By general concepts we have
 100 5 ÷ 10 5  
=  (100  x 100 x 100 x 100 x 100 ) ÷ (10 x 10 x 10 x 10 x 10)
10  x 10 x 10 x 10 x 10            
 105
So we can say  100 5 ÷ 10 5  = ( 100 / 10 ) = 10 
Now in the  above examples   1005 and   105  bases  is  different but power is same so the bases of the exponents,i.e, 100 and 10 is divided hence result is 10 so required solution is 105.          
  

Laws of exponent - 5
On taking Numbers with Exponents ZERO

For any non zero real number a 
                    0 =  1
or in general, we can say that any number ( except 0 ) raised to the power ( or Exponent ) 0  is always ONE ( 1 ).
It can be easily verified by following illustrative examples;
Example 11:- Evaluate  83 ÷ 83 ?
Solution:- By general concepts we have
 83 ÷ 83  = [ 8 x 8 x 8 ] ÷ [ 8 x  8 x 8 ]
             = 1 x 1 x 1 
            =  1
By using laws of Exponents  am÷ an = am - n  again we can write in other way 
83 ÷ 83
= 3 - 3
 0
So we have  83 ÷ 83      =  1 
We may consider now one more illustration  for verification of above results       
Example 12:- Evaluate 1001 5 ÷ 1001 5 ?
Solution:- By general concepts we can write in the following way
 1001 5 ÷ 1001 5  
= (1001  x 1001 x 1001 x 1001 x 1001 ) ÷  (1001  x 1001 x 1001 x 1001 x 1001 ) 
 = 1  x 1 x 1 x 1 x 1
= 1
By using laws of Exponents  am÷ an = am - n  we can write 
1001 5 ÷ 1001 5  
= 1001 5 - 5
=  10010
So, we have  1001 5 ÷ 1001 5   =  10010  = 1 

Laws of exponent - 6
On taking Power of Power

For any non zero real number a 
                   ( m ) n =  m n = ( n ) m 
where m and n are rational numbers.
it can be easily verified by following illustrative examples;
Example 13:- Evaluate   ( 2 ) 3 ?
Solution:- By general concepts we that it means   is multiplied three times itself
  ( 2 ) 3 
= [ 2  ] x 2 ] x [ ]             
4 x 4 x 4             
 64
On using above property this problem  can be also solved in the following way;
 ( 2 ) 3 
=  6               
2 x 2 x 2 x 2 x 2 x 2             
 64
On the basis of the above laws of Powers and Exponents, We can optimize our time to solve problems not only in algebra but in all branches of pure sciences as well as in the fields of engineering sciences.
______________________________________________________
    
     

1 comment:

If you have any doubts, Please let me know.

Featured post

Mathematical Symbols - Calculus and Analysis

Mathematical Symbols  are very important to learn mathematics, on using symbols we can easily understand the concepts of topics.  Genera...

Popular Post